星期二, 3月 27, 2012

Internet Small Computer System Interface (iSCSI)

In computing, iSCSI (Listeni/ˈskʌzi/ eye-skuz-ee), is an abbreviation of Internet Small Computer System Interface, an Internet Protocol (IP)-based storage networking standard for linking data storage facilities. By carrying SCSI commands over IP networks, iSCSI is used to facilitate data transfers over intranets and to manage storage over long distances. iSCSI can be used to transmit data over local area networks (LANs), wide area networks (WANs), or the Internet and can enable location-independent data storage and retrieval. The protocol allows clients (called initiators) to send SCSI commands (CDBs) to SCSI storage devices (targets) on remote servers. It is a Storage Area Network (SAN) protocol, allowing organizations to consolidate storage into data center storage arrays while providing hosts (such as database and web servers) with the illusion of locally-attached disks. Unlike traditional Fibre Channel, which requires special-purpose cabling, iSCSI can be run over long distances using existing network infrastructure.    

Functionality

iSCSI uses TCP/IP (typically TCP ports 860 and 3260). In essence, iSCSI simply allows two hosts to negotiate and then exchange SCSI commands using IP networks. By doing this iSCSI takes a popular high-performance local storage bus and emulates it over wide-area networks, creating a storage area network (SAN). Unlike some SAN protocols, iSCSI requires no dedicated cabling; it can be run over existing switching and IP infrastructure. As a result, iSCSI is often seen as a low-cost alternative to Fibre Channel, which requires dedicated infrastructure except in its FCoE (Fibre Channel over Ethernet) form. However, the performance of an iSCSI SAN deployment can be severely degraded if not operated on a dedicated network or subnet (LAN or VLAN).
Although iSCSI can communicate with arbitrary types of SCSI devices, system administrators almost always use it to allow server computers (such as database servers) to access disk volumes on storage arrays. iSCSI SANs often have one of two objectives:
Storage consolidation
Organizations move disparate storage resources from servers around their network to central locations, often in data centers; this allows for more efficiency in the allocation of storage. In a SAN environment, a server can be allocated a new disk volume without any change to hardware or cabling.
Disaster recovery
Organizations mirror storage resources from one data center to a remote data center, which can serve as a hot standby in the event of a prolonged outage. In particular, iSCSI SANs allow entire disk arrays to be migrated across a WAN with minimal configuration changes, in effect making storage "routable" in the same manner as network traffic.

[edit]Network booting

For general data storage on an already-booted computer, any type of generic network interface may be used to access iSCSI devices. However, a generic consumer-grade network interface is not able to boot a diskless computer from a remote iSCSI data source. Instead it is commonplace for a server to load its initial operating system from a TFTP server or local boot device, and then use iSCSI for data storage once booting from the local device has finished.
A separate DHCP server may be configured to assist interfaces equipped with network boot capability to be able to boot over iSCSI. In this case the network interface looks for a DHCP server offering a PXE or bootp boot image. This is used to kick off the iSCSI remote boot process, using the booting network interface's MAC address to direct the computer to the correct iSCSI boot target.
Most Intel Ethernet controllers for servers support iSCSI boot. [1]

沒有留言: